Component

MA Public Opinion and Political Behaviour
BSc Biotechnology options

Year 2, Component 05

Option(s) from list
BS222-5-AU
Genome Science
(15 CREDITS)

We are in the age of genomics and scientists have devised new technologies that can generate whole genome sequences in days which would once have taken years to achieve. Learn the high-throughput techniques of next-generation sequencing used to study genomes, the proteome and the interactome. Investigate how nucleotide sequences are analysed, applying the analytical tools used by research scientists and understand how new genes are discovered and their functions revealed. You also discover how our knowledge of gene structure is being applied in the emerging field of synthetic biology to create new organisms and modify existing ones by gene editing.

BS223-5-AU
Immunity in Health and Disease
(15 CREDITS)

Our bodies are under attack. So how do we defend ourselves against foreign invaders? Explore the anatomical and structural components of the immune system and assess what happens in the event of immunodysfunction. Utilising real-world case-studies (eg AIDS), and looking at specific examples (eg allergy and transplantation) you will review important aspects of clinical immunology and immuno-pathology, gaining an understanding of auto-immunity and immune-deficiencies. You will also consider the future of human immunology – evaluating how far vaccines can protect us against disease. Using the knowledge you have gained you will be able to identify areas of current immunology understanding that could lead to positive medical intervention.

BS225-5-SP
Cell Biology
(15 CREDITS)

The study of cells is at the centre of modern biology.  Learn how cellular components determine cell structure and function, how cells communicate and how signaling pathways regulate cell fate.  You also explore the regulation of the cell cycle and cell death and learn about changes that occur in cells that have become cancerous. A solid understanding of cell biology opens doors to more specialist topics, such as plant biotechnology and cancer biology.

BS228-5-SP
Metals in Biotechnology
(15 CREDITS)

Assess the importance of zinc, copper and iron in biological systems and review how they are kept in stable equilibrium. Explore the structure and functions of proteins and enzymes that contain metal cofactors and discuss the diseases and possible treatments associated with both metal deficiency and overload.

BS230-5-AU
Proteins and Macromolecular Assemblies
(15 CREDITS)

Understanding the shape, structure and folding of proteins can provide the basis for drug targeting in disease processes and enable us to develop a better understanding of specific biological pathways. This module takes a look at particular macromolecular assemblies using the most up-to-date structural biological techniques with a particular emphasis on x-ray crystallography.

BS231-5-AU
Computational Data Analysis: R for Life Sciences
(15 CREDITS)

If we were to compile the DNA sequence of the human genome into a book, it would be 200,000 pages long, and would take 10 years to read. The ability to effectively interpret and analyse large-scale genetic and genomic data sets is a crucial skill for next-generation biologists. The module provides a basic introduction to R, the programming language of choice for biologists industry and academia. You learn to write scripts and functions, read and write data files in different formats, use basic plot functionalities and perform basic statistical analysis.

BS234-5-AU
Plant Molecular Physiology and Genetics
(15 CREDITS)

The aim of this module is to provide a view of how a fundamental understanding of plant processes can impact on the production of plants for the 21st century. Learn the essential processes and constraints on plant growth and development, and explore how innovative technological approaches in plant sciences may provide real solutions to our future predicted global food shortage. You’ll look into key aspects of plant physiology such as different photosynthetic mechanisms, and modern approaches to manipulating plant performance and growth.

BS240-5-AU
Molecular Ecology
(15 CREDITS)

This module will develop your understanding of how researchers examine the molecular components of life to better understand the ecology of living organisms. This feeds directly into modern approaches for conservation biology, monitoring ecosystems, examining species iterations, and advancing our understanding of the ecological and evolutionary relationships supporting a living planet. This module will be delivered via a series of lectures and lab practicals, with a balanced emphasis on both applying knowledge and understanding theory.

BS241-5-SP
Biodiversity: From Genes to Ecosystems
(15 CREDITS)

Examine how competition, predation, herbivory, mutualism, disease and parasitism affect the distribution, abundance and growth of populations, and how populations interact to affect the structure and dynamics of ecological communities. You apply this ecological knowledge to real-world problems, such as pest control and conservation.

BS253-5-AU
Microbial Diversity and Biotechnology
(15 CREDITS)

Microbes have been on the Earth for at least 3.5 billion years; they tolerate or require a huge range of physico-chemical extremes and perform a remarkable array of functions. This module will examine the diversity of microbes, and how they can be applied for the benefit of society and the environment, for example by bioremediation of contaminated land, recovery of oil and metals, production of biofuels and therapeutic compounds.

BS281-5-SP
Protein Bioinformatics
(15 CREDITS)

Bioinformatics have become an indispensable skill for the next generation of biochemists and biologists in order to retrieve, analyse and interpret data. You will learn how to access, search and extract data from publicly available protein databases, and analyse and display results using appropriate software.

At Essex we pride ourselves on being a welcoming and inclusive student community. We offer a wide range of support to individuals and groups of student members who may have specific requirements, interests or responsibilities.

Find out more

The University makes every effort to ensure that this information on its programme specification is accurate and up-to-date. Exceptionally it can be necessary to make changes, for example to courses, facilities or fees. Examples of such reasons might include, but are not limited to: strikes, other industrial action, staff illness, severe weather, fire, civil commotion, riot, invasion, terrorist attack or threat of terrorist attack (whether declared or not), natural disaster, restrictions imposed by government or public authorities, epidemic or pandemic disease, failure of public utilities or transport systems or the withdrawal/reduction of funding. Changes to courses may for example consist of variations to the content and method of delivery of programmes, courses and other services, to discontinue programmes, courses and other services and to merge or combine programmes or courses. The University will endeavour to keep such changes to a minimum, and will also keep students informed appropriately by updating our programme specifications. The University would inform and engage with you if your course was to be discontinued, and would provide you with options, where appropriate, in line with our Compensation and Refund Policy.

The full Procedures, Rules and Regulations of the University governing how it operates are set out in the Charter, Statutes and Ordinances and in the University Regulations, Policy and Procedures.